

- Autonomes Fahren
- Verkehrssteuerung
- ► Fahrzeug-zu-Fahrzeug-Kommunikation
- ► Fahrzeug-zu-Verkehrsinfrastruktur-Kommunikation
- Fahrzeug-zu-Cloud-Kommunikation
- ▶ 5G und WLAN in Bezug auf zukünftige Mobilitätskonzepte
- ► Cloud-Technologie bzw. die Verarbeitung von Informationen und Speicherung im Internet mit Echtzeit-Datenfluss

ZUKÜNFTIGE MOBILITÄTSKONZEPTE

VORAUSSETZUNGEN

Die Schülerinnen und Schüler sind mit der Internet-Recherche vertraut. Sie haben Erfahrungen als passive Verkehrsteilnehmer in Fahrzeugen und sind mit modernen Assistenzsystemen von Fahrzeugen und auch mit elektronischen Verkehrsschildern oder Parkleitsystemen aus dem Alltag vertraut. Die Unterrichtseinheiten "Intelligent Car" und "Mobilfunknetze LTE/5G" müssen Sie im Vorfeld durchgeführt haben. Daher sind ihnen die besonderen Merkmale des 5G Mobilfunk-Standards bekannt. Aus dem eigenen Umfeld kennen sie WLAN-Verbindungen für das Smartphone. Aus der Computertechnik haben sie eine Vorstellung von Cloud-Technologien.

HINWEISE ZUM STUNDENABLAUF

GESAMTZEIT: 90 MINUTEN

PHASE	INHALT	ZEIT
1. Einstieg und Motivation	Vorher-Nachher-Vergleich: Zwei Gruppen führen "Experimente" mit Münzen/Kreidestücken/ Radiergummis als Autos vor. Zwei Verkehrssituationen werden dabei durchgespielt. Bei beiden Experimenten dürfen die "Autos" zunächst nicht sprechen, im zweiten Durch- gang ist Info-Austausch erlaubt. Die Schülerinnen und Schüler beobachten und verglei- chen beide Fälle.	15 Min.
2. Begriffe, Kategorien und Beispiele für zukünftige Mobilitätskonzepte	Nachdem die Schülerinnen und Schüler aus den Experimenten eine Vorstellung von der Vernetzung von Fahrzeugen und den Auswirkungen durch deren Informationsaustausch bekommen haben, beschäftigen sie sich in Einzel- und Partnerarbeit mit konkreten Anwendungsbeispielen. Sie ordnen den Beispielanwendungen die Fachbegriffe in Englisch und Deutsch zu, bilden Kategorien und können die Anwendungen einordnen.	25 Min.
3. Technische Umsetzung der Beispiele	Mithilfe der Grafik werden die Funktionen der Beispielanwendungen und die technische Umsetzung visuell dargestellt. Die Schülerinnen und Schüler erkennen in Zweier-Gruppen die Funktionsweise der Anwendungen sowie die Funkvernetzung und wissen, welche Infos zwischen den Elementen ausgetauscht werden. Im Anschluss werden im Allgemeinen sowie speziell für die Anwendungsbeispiele die Vor- und Nachteile diskutiert.	30 Min.
4. Technische Realisierung durch Funksysteme pWLAN und 5G	In dieser Phase werden die besonderen Anforderungen der Beispiele an die zugehörige Funkverbindung charakterisiert. Gleichzeitig werden die speziellen Eigenschaften der rivalisierenden Funksysteme pWLAN und 5G erklärt. Die Schülerinnen und Schüler arbeiten in Zweier-Gruppen heraus, welches Funksystem jeweils am besten für die Anwendungen geeignet ist.	20 Min.

BINNENDIFFERENZIERUNG

- Die Basisaufgabe ist von allen Schülerinnen und Schülern zu lösen.
- Die Bonusaufgabe ist optional, sie dient als Reserve oder Ergänzung für leistungsstärkere Lernende.

HAUSAUFGABE:

Recherchiert im Internet, in Auto/Motor-Presseprodukten oder durch Erkundigung in Autohäusern für die Automarken Mercedes-Benz, VW und BMW: Werden "Fahrzeuge mit Funkvernetzung für zukünftige Mobilitätskonzepte" in Serie gebaut? Für welches Modell, in welcher Form und ab wann?

HINWEISE UND LÖSUNGEN ZU DEN AUFGABEN

WWW.ZUKUNFTSINDUSTRIE.DE – ZUKÜNFTIGE MOBILITÄTSKONZEPTE

EINSTIEG UND LÖSUNG FÜR DAS **EINSTIEGSEXPERIMENT**

Für die Experimente werden ein Kasten oder eine Tasche als Hindernis und mehrere 5ct- und 10ct- Münzen benötigt (alternativ können Kreidestücke oder Radiergummis verwendet werden). Zwei Gruppen mit jeweils 4 Aktiven und Beobachtern führen die Experimente vor:

Die erste Gruppe stellt eine Ampelszene auf gerader Straße nach. Im ersten Durchgang darf nicht gesprochen werden! Ein Aktiver mit einem 5ct-Stück ist die "Ampel" und blockiert für unbekannte Zeit (etwa 15s) die Straße. Die 3 anderen Aktiven mit 10ct-Münzen nähern sich nacheinander der Ampel und müssen bremsen und anhalten. Im zweiten Durchgang darf gesprochen werden. Die Ampel teilt mit, wann sie auf Grün schaltet. Die Beobachter beschreiben die Situationen vorher und nachher.

Die zweite Gruppe spielt eine schwer einsehbare Baustelle hinter einer Kurve (hinter der Kiste) nach. Die 10ct-Münz-Autos - 2 oder 3 Aktive - fahren rasch um die Kurve und nähern sich der 5ct-Münze als "Baustelle". Im ersten Durchgang darf wieder nicht gesprochen werden, im zweiten Durchgang dürfen alle miteinander sprechen, die Autos untereinander und die Baustelle mit den Autos. Die Beobachter beschreiben die Situation vorher und nachher.

Als Ergebnis sollte der Verkehrsfluss bei Infoaustausch der Fahrzeuge deutlich flüssiger gelingen.

1. BEISPIELE ZUKÜNFTIGER MOBILITÄTSKONZEPTE

BESCHREIBE DIE BEISPIELANWENDUNGEN MIT EIGENEN WORTEN

Lösungsvorschlag:

- Der Notbremsassistent im Fahrzeug erkennt selbstständig ein Hindernis und führt eine Notbremsung durch, wenn der Fahrer nicht eingreift.
- Bei der "Ampelinformation" teilt die Ampel den Autos mit, wann sie auf Grün schaltet. Das Fahrzeug berechnet daraus die Geschwindigkeit, mit der die Ampel ohne Stopp durchfahren wird.
- Beim "Community based Parking" senden Fahrzeuge, die an einer Parklücke vorbeifahren, an die Internet-Cloud den Ort und die Maße der Lücke. Die Cloud steuert suchende Fahrzeuge zur Lücke.

- Bei der "Warnung vor Glatteis" teilt ein Fahrzeug, das Glatteis feststellt, anderen Fahrzeugen in der Umgebung diese Info
- Das "a utonome Fahren" tauscht Infos mit Ampeln und der Cloud und anderen Autos aus und greift auch auf die eigenen Assistenzsysteme zurück.

> TRAGE DIE FACHBEGRIFFE IN DIE TABELLE EIN

		Zukünftige Mobilitätskonzepte				
	Aktuelle Fahrerassistenz- systeme	Vernetzte Fahrzeuge, Connected Cars				
		Fahrzeug-zu-Verkehrs- infrastruktur; Fahrzeug-zu-X; Car2X; Car-to-Road- side; Vehicle-to-Infra- struktur (V2I)	Car2Cloud; Fahrzeug-zu- Rechenzentrum	Fahrzeug-zu-Fahrzeug; Vehicle-to-Vehicle (V2V); Car2Car	Autonomes Fahren	
Beispiel	Notbrems-Assistent	Ampelinformation	"Community based Parking", d. h. Auto meldet freie Parklü- cken an andere Autos in der Umgebung	Warnung vor Glatteis, Unfall, Stau, Baustelle	Die Technik im Auto bewältigt alle Verkehrssituationen selbsttätig Kein menschlicher Fahrer nötig	
Wer tauscht Infos mit wem aus?	Info bleibt im Fahr- zeug, Radarsystem im Fahrzeug mit Bordrechner	Ampel zu Fahrzeug	Fahrzeug zur Cloud, d. h. Verkehrsrechner im Internet Cloud an viele Fahrzeuge in der betroffenen Region	Ein Fahrzeug direkt zu mehreren/anderen Fahrzeugen	Fahrzeug mit Infra struktur Fahrzeug mit Cloud Fahrzeug mit anderen Fahrzeuge Infos der Bord- Sensoren	
Welche Infos?	Erkanntes Hindemis und Entfernung	Ampel sendet: Stand- ort-Infos, Schaltstatus, z. B. in 15 Sekunden "Grün"	Positionsdaten und Maße der Parklücke	Fahrzeug-Sensoren melden Glattels, Not- bremsung bei Unfall oder Stauende, oder erkennen Warnschild	Alle Infos zum aktuelle Verkehrsgeschehen und zur Situation des Fahrzeugs	
Wo findet die Info-Verarbei- tung statt?	Im Fahrzeug	Im Fahrzeug: Berech- nung der optimalen "Grün"-Geschwin- digkeit und Anzeige Im Navi	Im Fahrzeug: Navi verarbeitet Positions- daten der Parklücke und navigiert zum Parkplatz	Im sendenden Fahr- zeug: Verarbeitung und Senden der Sensor-Infos Empfangs-Fahrzeuge: Anzelge im Navi	Alle Infos zum aktuellen Verkehrs- geschehen und zur Situation des Fahrzeugs	
Wann serienmäßig verfügbar?	aktuell	Mitte 2019	Ende 2017	АЬ 2019	Ab 2040	

BONUSAUFGABE

Lösungsvorschlag:

Zwei Wochen Wartezeit an Ampeln = 2x7x24x3.600 Sekunden = 1.209.600s

Mit einer mittleren Wartezeit von 45s fährt das Auto also 1.209.600s/45s = 26.880-mal los.

- Gesamtkraftstoffverbrauch ist 26.880 x 0,02I = 537,6 Liter; Gesamt-CO₂-Menge:
- 26.8801 x 5g = 134.400g = 134,4kg = 0,1344 Tonnen CO₂
- Die Ampelinformation soll ein Stoppen des Fahrzeugs an der Ampel vermeiden. Damit werden zusätzlicher Kraftstoff und CO₂ für das Anfahren eingespart. Das "Community based Parking" reduziert den Parklücken-Suchverkehr. Damit müssen Fahrzeuge weniger Strecke beim Suchen eines Parkplatzes in der Stadt zurücklegen und sparen Kraftstoff und ${\rm CO_2}$ ein.

2. TECHNISCHE UMSETZUNG ZUKÜNFTIGER MOBILITÄTSKONZEPTE

► ORDNE DIE BEGRIFFE AUS DER TABELLE DER GRAFIK ZU

Lösungsvorschlag:

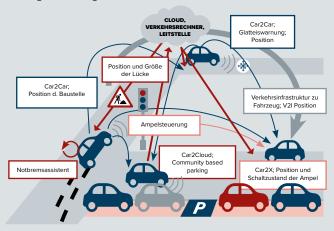
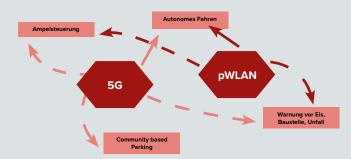


Abbildung 3

▶ VOR- UND NACHTEILE ZUKÜNFTIGER MOBILITÄTS- KONZEPTE


Lösungsvorschlag:

TUKÜNFTIGE MOBILITÄTSKONZEPTE VORTEILE • Weniger Stau • Bessere Straßenauslastung • Weniger Unfälle • Weniger Kraftstoffverbrauch • Weniger Feinstaub, weniger Abgase, weniger CO₂ • Mehr Verkehrssicherheit NACHTEILE • Gefahr von Hackerzugriff auf Fahrzeuge • Dritte können Daten mitlesen • Aufenthaltsorte und Bewegungsprofile der Fahrzeuginhaber sind bekannt

Beispiel	Notbremsassistent	Ampelinformation	"Community based Parking", d. h. Auto meldet freie Parklü- cken an andere Autos in der Umgebung	Warnung vor Glatteis, Unfall, Stau, Baustelle	Autonomes Fahren
Vorteile	Weniger Unfälle	Besserer Verkehrsfluss Weniger Staus Weniger Kraftstoff- verbauch Weniger CO ₃ - Verbrauch	Weniger Kraftstoff- verbauch Weniger CO ₂ - Verbrauch Weniger Verkehr	Verbesserung der Verkehrssicherheit Weniger Unfälle	Weniger Staus Weniger Kraftstoff- verbauch Weniger CO ₂ - Verbrauch Mehr Komfort Weniger Unfälle
Nachteile	Fehlalarm möglich	Bei dichtem Verkehr wenig wirksam	Aufenthaltsort und Bewegungsprofil werden übermittelt Mögliche Hacker- angriffe	Aufenthaltsort und Bewegungsprofil werden übermittelt Mögliche Hacker- angriffe Verfälschen von Warmeldungen	Aufenthaltsort und Bewegungsprofil werden übermittelt Mögliche Hacker- angriffe Verfälschen von Wammeldungen

3. PWLAN ODER MOBILFUNK FÜR ZUKÜNFTIGE MOBILITÄTSKONZEPTE

Lösungsvorschlag:

